国家公务员考试网 地方站: 临沂 日照 潍坊 烟台 东营 枣庄 青岛 济南 更多
您的当前位置:山东公务员考试网 >> 行测资料 >> 数量

山东公务员考试数量关系(11)

发布:2009-12-28 09:27:37 字号: | | 我要提问我要提问

    公务员考试中,数学运算是常见题型,数学运算又包含了很多类型,而利用公倍数和公约数常常是快速解题的一种有效手段。

  概念

  (1)最大公约数:如果有一个自然数a能被自然数b整除,则称ab的倍数,ba的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。

  (2)最小公倍数:如果有一个自然数a能被自然数b整除,则称ab的倍数,ba的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数。公约数中最小的一个大于零的公倍数,称为这几个自然数的最小公倍数。

  联创世华专家提醒:这类概念的应用一般在星期日期、余数相关等问题中,考生不但要熟练求最大公约数、最小公倍数的方法,还要学会在特定的情境中灵活运用。

  例题讲解

  例题1:有两个两位数,这两个两位数的最大公约数与最小公倍数的和是91,最小公倍数是最大公约数的12倍,求这较大的数是多少?

  A.42 B.38

  C.36 D.28

  【答案】D

  【解析】这道例题非常清晰的点明了主旨,就是最大公约数与最小公倍数问题,那么我们可以根据定义来解决。这两个数的最大公约数是91÷(12+1)=7,最小公倍数是7×12=84,故两数应为2128

  例题2:三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每段都不能有剩余,那么最少可截成多少段?

  A.8 B.9

  C.10 D.11

  【答案】C

  【解析】这道例题中隐含了最大公约数的关系。截成相等的小段,即为求三数的公约数,最少可截成多少段,即为求最大公约数。每小段的长度是120180300的约数,也是120180300的公约数。120180300的最大公约数是60,所以每小段的长度最大是 60厘米,一共可截成120÷60+180÷60+300÷60=10段。

  例题3:一个小于200的数,除以2436都有余数16,则这个数是( )

  A.52 B.78

  C.88 D.156

  【答案】C

  【解析】这道例题中隐含了最小公倍数的关系。除以2436都有余数16”,说明此数减去16,即为2436的公倍数。2436的最小公倍数为72,则此数应为72+16=88

  特点小结

  1.在互质的几个数中,1是这些互质的数的公约数。

  2.约数:如果数A能被数B整除(B不为0)A就叫做B的倍数,B就叫做A的约数(或因数),倍数和约数是相互依存的。

  公约数:几个数公有的约数叫做这几个数的公约数。

  一个数的约数的个数是有限的,其中最小的是1,最大的是它本身。

  例: 在246中,2就是246的最大公约数

  3.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  一个数的倍数是无限的,几个数的公倍数也是无限的。

  利用分解质因数的方法可以求出两个数的最小公倍数。

  例:求68的最小公倍数。

  6=2×38=2×4

  所以68的最小公倍数是:2×3×4=24

  思考问题

  下列各组数的最小公倍数和最大公约数分别是多少?

  (1)较大数是较小数倍数的。

  最小公倍数:较大数

  最大公约数:较小数

  (2)两个数是互质数的。

  最小公倍数:两个数乘积

  最大公约数:1

  (3)两个数既不互质,较大数又不是较小数倍数的。

  最小公倍数:两数所有独有质因数及公有质因数的乘积

  最大公约数:所有的公有质因数的乘积

  下面是专家组为大家精选的两道公考真题,掌握方法是关键!

  1. 甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。如果518日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?(2008中央)

  A.1018 B.1014

  C.1118 D.1114

  2. 有四个自然数ABCD,它们的和不超过400,并且A除以B商是55A除以C商是66A除以D商是77。那么,这四个自然数的和是()(2006山东)

  A.216 B.108

  C.314 D.348

  【答案】

  1. D2. C

  1. D.【解析】甲每隔5天去一次,意思是每6天去一次,依此类推,也就转化为求6121830的最小公倍数,即180;也就是在518的基础上往后180天,再考虑5,7,8,10四个月是大月,可知答案为D


点击分享此信息:
RSS Tags
返回网页顶部
http://www.sdgkw.org/ All Rights Reserved 苏ICP备11038242号-5
(任何引用或转载本站内容及样式须注明版权)XML